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Abstract

Recently, substantial program's has been made towards design-

ing, building and test-flying remotely piloted Micro Air Vehicles

(MA Vs). This progr_vs in overcoming the aerodynamic obstacles

tojlight at very small scales hers', unfortunately, not been matched

by similar progres's in autonomous MA V flight. Thus, we propose

a robust, vision-based horizon detection algorithm _" the first

step towards autonomous MA K_'. In this paper, we first motivate

the zLs'eof computer vision jor the horizon detection t_Ls'kby c,xam-

ining the flight o/bird; (biological MA V_') and cvnsidering other

practicalJactors. We then describe our vision-b_ed horizon de-

tection algorithm, which hct_' been demon,_'trated at 30Itz with

over 99.9% correct horizon identification, over terrain that in-

cludes roads, buildings large and small, meadows, wooded areas',

and a lake. We conchtde with some sample hon'zon detection re-

sults and preview a companion paper [4], where the work dis-

cm'sed here Jbrms the core of a complete autonommts" ./light

stability system

1. Introduction

Ever since humankind's first powered flight, research efforts

have continually pushed the envelope to create flying machines

that are faster and/or larger than ever before, Now, however, there

is an effort to design aircraft at the other, largely unexplored end

of the spectrum, where the desire for portable, low-altitude aerial

surveillance has driven the development and testing of aircraft

that are as small and slow as the laws of aerodynamics will permit

in other words, on the scale and in the operational range of

small birds. Vehicles in this class of small-scale aircraft are

known as Micro Air Vehicles or MA Ev.

Equipped with small video cameras and transmitters, MAVs

have great potential for surveillance and monitoring tasks in areas

either too remote or too dangerous to send human scouts. Opera-

tional MAVs will enable a number of important missions, includ-

ing chemical/radiation spill monitoring, forest- fire

reconnaissance, visual monitoring of volcanic activity, surveys of

natural disaster areas, and even inexpensive traffic and accident

monitoring. Additional on-board sensors can further augnlent

MAV mission profiles to include for example airborne chemical

analysis.

In the military, one of the primary roles for MAVs will be as

small-unit battlefield surceillance agents, where MAVs can act as

an extended set of eyes in the sky for military units in the field.

This use of MAV technology is intended to reduce the risk to mil-

itary personnel and has, perhaps, taken on increased importance

in Iight of the U.S.'s new war on terrorism, where special opera-

tions forces will play a crucial role. Virtually undetectable from

the ground, MAVs could penetrate potential terrorist camps and

other targets prior to any action against those targets, significantly

raising the chance for overall mission success.

Researchers in the Aerospace Engineering Department at the

University of Florida have established a long track record in de-

signing, building and test-flying (remotely human-piloted) practi-

cal MAVs [6-8,13,14]. For example, Figure l(a) shows one of our

latest MAV designs, while Figure 1(b) shows an ear/ier mode/in

flight; the inset depicts the on-board camera's view. Figures l(a)

and (b) are both examples ofllexible wing micro air vehicles that

have distinct advantages over conventional lifting body designs

[8,13,14].

While much progress has been made in the design of ever

smaller MAVs by researchers at UF and others in the past five

years, significantly less progress has been made towards equip-

ping these MAVs with autonomous capabilities that could signif-

icantly enhance the utility of MAVs for a wide array of missions.

In order for MAVs to be usable in real-world deployments, how-

ever, MA K_ must be able to execute a slate of behaviors with a

large degree of autonomy that does not, as r?/_vet, e._i,s't,

The first step in achieving such MAV autonomy is basic sta-

bility and control, although this goal presents some difficult chal-

lenges. The low moments of inertia of MAVs make them

vulnerable to rapid angular accelerations, a problem further com-

plicated by the fact that aerodynamic damping of angular rates de-

creases with a reduction in wingspan. Another potential source of

instability for MAVs is the relative magnitudes of wind gusts,

which are much higher at the MAV scale than for larger aircraft.

In fact, wind gusts can typically be equal to or greater than the for-

ward airspeed of the MAV itself. Thus, an average wind gust can

inunediately affect a dramatic change in the flight path of these

vehicles.

To deal with these challenges, we propose a vision-b_'ed ho-

rizon detection algorithm as the first step of a complete MAV

flight stability and control system. A companion paper [4] extends

this basic algorithm by addressing real-tinle control issues, and

discusses our initial implementation of a complete control system,
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Fig. 1: (a) recent MAV design and (b) another MAV in flight, and its view through an on-board camera.

with self-stabilized MAV flight results. In this paper, we first mo-

tivate the use of computer vision for the horizon detection task by

examining the flight of birds (biological MAVs) and considering

other practical factors. We then, describe our vision-based hori-

zon detection algorithm. Finally, we show sample results and of-

fer some concluding thoughts.

2. Background and motivation

2.1 Biological inspiration

While it is certainly true that man-made or mechanical MAVs

do not, as of yet, exhibit autonomy, their biological counterparts

-- namely, birds -- do. For aerospace and robotic researchers, the

extraordinary capabilities of birds are a source of wonderment

and frustration at the same time -- wonderment, because birds ex-

hibit a remarkably complex and rich set of behaviors, frustration,

because the duplication of those behaviors in man-made systems

has thus far been elusive. Given this sad state of affairs, it is nat-

ural for engineers and researchers to want to learn from and emu-

late these biological systems. Here, we do not intend to seek

structural equivalence between artificial MAV systems and bio-

logical neural systems; rather, we seek to learn important.fimc-

tional lessons from biology.

In studying the nervous system of birds, one basic observation

holds true for virtually all of the thousands of different bird spe-

cies: Birds rely heavily on sharp eyes' and vision to guide almost

every _pec't of their behavior [ 15]. Through evolution over time,

bird anatomy has adapted to streamline and lighten body weight

in order to be able to fly. This has been achieved through the elim-

ination of some bones, the "pneumatization" or hollowing of the

remaining ones, and even the total elimination of other unneces-

sary body parts like the urinary bladder [ 1]. Yet, when it comes to

their nervous system, and especially their eyes, similar reductions

in weight have not occurred.

Bird brains are proportionally much larger than those of liz-

ards and are comparable in size to those of rodents; yet, the most

striking feature of avian nervous systems are the eyes [1]. Eyes in

birds tend lo be large in relation to the size of their head; in fact,

for some birds, such as the European starling, eyes make up fully

15% of the mass of their head, compared to 1%/br humans [12].

Not only is the relative size of avian eyes impressive, but so is

their color perception and sharpness of vision. Photoreccptor

(cone) densities in the foveae can be as high as 65,000 per square

millimeter in bird eyes, compared to 38,000 per square millimeter

for humans [15]. And some birds exhibit visual acuity three times

that of humans; for example, the American Kestrel can recognize

an insect two millimeters in length from a distance as far away as

18 meters [5]. Given the excellent sight of birds, a substantial por-

tion of their brains is devoted to processing visual stimuli.

Birds use their eyes in a number of different ways. During

flight, bird eyes assist in obstacle avoidance and flight stability.

Predatory birds also rely on their sight to precisely track, target

and capture prey. When migrating geese fly in a V-formation, it

is believed that they use their vision to stay together as a group

and to avoid flying into one another [2]. And while the mecha-

nism for long-distance migration of birds is still not fully under-

stood, various experiments that have been conducted suggest that

at least some species of birds appear to use their vision to navigate

based on landmarks on the ground, the sun's position in the sky

and even the arrangement of stars at night [10]. It is certainly true

that some bird species do rely on other sensing, such as smell,

hearing (e.g. echolocation) and inner-ear balance as well: howev-

er, the relative importance of these senses varies between bird

species [ 15], and, as such, cannot be the unifying principle behind

complex bird behaviors, including flight, tracking and navigation.

2.2 Other considerations

Biological systems, while forceful evidence of the importance

of vision in flight, do not, however, in and of themselves warrant

a computer-vision based approach to MAV autonomy. Other

equally important factors guide this decision as well. Perhaps

most critical, the technologies used in rate and acceleration sen-

sors on larger aircraft are not currently available at the MAV

scale. It has proven very difficult, if not impossible, to scale these

technologies down to meet the very low payload requirements of

MAVs. While a number of sensor technologies do currently exist

in small enough packages to be used in MAV systems, these small

sensors have sacrificed accuracy for reduced size and weight.

Take, for example, MEMs (Micro Electro-Mechanical Systems)



rategyrosandaccelerometers.MEMspiezoelectricgyros,while
onlyweighingapproximatelyonegram,havedriftratesontheor-
derof 100° perminuteandarehighlysensitivetochangesin
temperature.Whileelaboratetemperaturecalibrationprocedures
canimprovetheiraccuracysomewhat,theiruseininertialnaviga-
tionisproblematicatbest.

Evenifsufficientrateandaccelerationsensorsdidexist,how-
ever,theiruseonMAVsmaystillnotbethebestallocationof
payloadcapacity.FormanypotentialMAVmissions,visionmay
betheonlypracticalsensorthancanachieverequiredand/orde-
sirableautonomousbehaviors.Furthermore,giventhatsurveil-
lancehasbeenidentifiedasonetheirprimarymissions,MAVs
mustnecessarilybeequippedwithon-boardimagingsensors,
suchascamerasorinfraredarrays.Thus,computer-visiontech-
niquesexploitalreadypresentsensors,richininformationcon-
tent,tosignificantlyextendthecapabilitiesofMAVs,without
increasingtheMAV'srequiredpayload.
2.3Horizondetectionfor stability

Sowhatvision-basedinformationdowehopetoextractfrom
theon-boardcamera?Ataminimum,ameasurementofthe
MAV'sangularorientationisrequiredforbasicstabilityandcon-
trol. While for larger aircraft this is typically estimated through

the integration of the aircraft's angular rates or accelerations, a vi-

sion-based system can directly measure the aircraft's orientation

with respect to the ground. The two degrees of freedom critical for

stability -- the bank angle ( _ ) and the pitch angle ( 0 ) -- can be

derived from a line corresponding to the horizon as seen from a

forward facing camera on the aircraft. The bank angle is given by

the inverse tangent of the slope m of the horizon line,

= tan-1 (m). (1)

While the pitch angle cannot be exactly calculated from an arbi-

trary horizon line, it will be closely proportional to the percentage

of the image above or below that line. In our development below,

the percentage above or below the horizon line will be denoted by

the symbols Oa and °t,, respectively, where of course,

°a = 1 --(Yb. (2)

In a rectangular image, the relationship between Crb and 0 is non-

linear, may be lightly coupled with _, and can vary as a function

of camera distortions. While a calibration table can be used to

model the exact relationship between c3t_ and 0, our flight tests

have shown adequate performance modeling that relationship as

linear.

3. Vision-guided horizon detection

3.1 Challenges

Thus, at the heart of our MAV stability and control system is

a vision-b_'edhorizon detection algorithm, that finds the line (i.e.

the horizon) with the highest likelihood of separating ground from

sky in a given image. Identifying this line between ground and sky

is a very straightforward task for humans; autonomous horizon

detection, on the other hand presents significant challenges.

Viewed from a statistical perspective, color and texture distribu-

tions of the ground and sky can vary dramatically based on the

time of day, the current weather and the specific terrain over

which the MAV is flying at any given moment. Therefore, any ro-

bust approach to the problem should not make too many or too re-

strictive a priori assumptions about the appearance of either the

sky or the ground. The sky isn't always blue; it can vary in appear-

ance from light blue, to textured patterns of blue, yellow and

white (from clouds), to dark gray and anything in between.

Ground terrain can be even more variable in appearance. Roads,

buildings, meadows, forests, cars, rivers, lakes, sand and snow all

introduce substantial variations in ground appearance, and, unlike

the sky, ground images can sharply differ from one video frame

to the next.

3.2 Initial attempt

Given these realities, it is difficult to envision a robust vision-

based horizon fitting algorithm that relies heavily on a priori sta-

tistical assumptions about the sky and ground. Rather, a robust al-

gorithm wiU look not at absolute appearance, but instead focus on

relative differences in appearance between the ground and the

sky. Our first attempt to capture this principle in an algorithm pro-

ceeds as follows. First, sharp differences in appearance are detect-

ed along the vertical columns of the image array, and y-values

that maximally separate the aggregate distribution of pixels on ei-

ther side (above and below) are identified. 1 Ideally, the identified

(x, y) pixels should locate a rough outline of the border between

sky and ground in the image, and a line that is fitted to those points

should identify the two degrees of freedom of the horizon line.

While this approach proves to be relatively successful for uniform

ground terrain, the algorithm tends to break down in the presence

of significant large objects on the ground, such as buildings or

roads. Yet in MAV missions, man-made structures and vehicles

are precisely those things in which we are likely to be most inter-

ested. Consider, for example, Figure 2, which identifies points of

sharpest distinction in green, and the consequent (wrong) estimate

of the horizon. Modifications to this initial algorithm, such as out-

lier rejection and other heuristic methods, do little to alleviate

these problems.

3.3 Robust algorithm

Given the result in Figure 2 (and other similar failures), it is

clear that a different approach is required. We build the develop-

ment of a second, much more robust algorithm on two basic as-

sumptions: (l) the horizon line will appear as approximately a

straight line in the image, something the initial algorithm fails to

do; and (2) the horizon line will separate the image into two re-

gions that have different appearance; in other words, sky pixels

will look more like other sky pixels and less like ground pixels,

and vice versa. The question now is how to transform these basic

assumptions into a workable algorithm.

The first assumption -- namely, that the horizon line will ap-

pear as a straight line in the image -- reduces the space of all pos-

sible horizons to a two-dimensional search in line-parameter

space. For each possible line in that two-dimensional space, we

must be able to tell how well that particular line agrees with the

second assumption -- namely that the correct horizon line will

1. This approach wtzs' originally irtvpired by the work in [11] on

cut�uncut crop-line detection for autonommLs' harv_s'ting and

appears similar in nature to the preliminaty autonomoz_s" [ly-

ing *_vrk desc,'ihed in [9].



Fig, 2: An early attempt at horizon detection, Pixels marked in

green indicate the sharpest distinction in color values down
vertical columns; the yellow line indicates the consequent

incorrect horizon detection.

separate the image into two regions that have different appear-

ance. Thus our algorithm can be divided into two functional parts:

(1) for any given hypothesized horizon line, the definition of an

optimization criterion that measures agreement with the second

assumption, and (2) the means for conducting an efficient search

through all possible horizons in two-dimensional parameter space

to maximize that optimization criterion. Below, we discuss each

of these in turn.

3.4 Optimization criterion

So far, we have talked about the "appearance" of the sky and

ground in an image, but have not made explicit what exactly is

meant by that. For our purposes, we view color, as defined in

RGB space, as the most important measure of appearance. While

other measures, such as texture, may also play an important role

in distinguishing sky from ground, real-time constraints force a

relatively simple representation of appearance.

For any given hypothesized horizon line, we label pixels

above the line as sky, and pixels below the line as ground. Let us

denote all hypothesized sky pixels as,

= [r_ gS b_],i6 {1 ..... n_}, (3)X s

where r] denotes the red channel value, oz"_ denotes the green

channel value and b_ denotes the blue channel value of the i th

sky pixel, and let us denote all hypothesized ground pixels as,

x g = [rggg b_g],iE { 1 ..... ng}, (4)

where r,g denotes the red channel value, gtg denotes the green

channel value and b_g denotes the blue channel value of the i th

ground pixel.

Now, given this pixel grouping, we want to quantify the as-

sumption that sky pixels will look similar to other sky pixels, and

that ground pixels will look similar to other ground pixels. One

measure of this is the degree of variance exhibited by each distri-

bution. Therefore, we propose the following optimization criteri-

on:

1 (5)
j, + I+Izgl

based on the covariance matrices Z s and Zg of the two pixel dis-

tributions,

n s

1

_s. (n s - I) £ fx_- 13s)(XS -gs)r (6)
i=1

tit

Zg - (ng-I l)i=21(xg-_tg)(Xg-]'ig)l" (7)

where,

/1s Jig

L x, L E x¢ (8)
Its = ns.Z _ +'l+tg =

i = 1 ngi = 1

denote the mean vectors for the sky and ground distributions re-

spectively (note the implicit assumption that the sky and ground

distributions are roughly Gaussian distributed). In equation (5),

I " [ denotes the determinant, which measures the volume or

variance of each distribution; maximizing JI therefore minimiz-

es the intra-class variance of the ground and sky distributions.

Assuming that the means of the actual sky and ground distri-

butions are distinct (a requirement for a detectable horizon, even

for people), the line that best separates the two regions should ex-

hibit the lowest variance from the mean. If the hypothesized hori-

zon line is incorrect, some ground pixels will be mistakenly

grouped with sky pixels and vice versa. The incorrectly grouped

pixels will lie farther from each mean, consequently increasing

the variance of the two distributions. Moreover, the incorrectly

grouped pixels will skew each mean vector slightly, contributing

further to increased variance in the distributions.

For images with sufficient color information, the optimization

criterion Jl works well. In practice, however, the video signal

from the MAV can easily lose color information I and become

nearly black and white. This causes the covariance matrices E s

and Eg to become ill-conditioned or singular:

1: 1=o, Iz+:l=o. ¢9)
In other words, one or more of the eigenvalues,

Li*, k,g, ie {I,2,3}, (10)

for each covariance matrix degenerates to zero, so that the deter-

minant, which is equivalent to the product of the eigenvalues, no

longer represents a useful measure of variance, and JI becomes

ill-defined. For such cases, the augmented optimization criterion

J2 better captures the desired quality of the hypothesized horizon
line:

1. On-board camera._' are required to be vely sntall dae to the

limited payload capacity ol MA Vs. As such, cantertL_" _'ed in

our flight testing are single-chip CMOS models exhibiting

pm_r color characteristics. Moreover, color information can

occasionally be lost through video transmission tLs"well, due to

limited transmission range and�or outside electronic inter]er-

ence.
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Note that in J2, the determinant terms will dominate as long as

enough color information is available; however, when such color

information is not present, the largest eigenvalues of each covari-

ance matrix will become controlling instead.

3.5 Horizon detection

Given the "12 optimization criterion in equation ( l l), which al-

lows us to evaluate any given hypothesized horizon line, we must

now fund that horizon line which maximizes "/2" As we have stat-

ed previously, this boils down to a search in two-dimensional line

parameter space.

Let us first define our search space of horizon lines more pre-

cisely. Two-dimensional lines can be parameterized in at least

two ways that are relevant to our application. The first is the fa-

miliar slope-intercept parameterizafion:

y = rnx+b (12)

where m denotes the slope of the line, and b denotes the y -inter-

cept. Alternatively, we can parameterize a line using the bank an-

gle 0 and pitch value o h previously defined. On the one hand,

the (0, _b) parameterization is more convenient for clearly

bounding the search space,

_ [-_/2, _/2], er b E [0%, 100%], (13)

and for stability and control during flight; on the other hand, the

(m, b) parameterization is required for rectangular image pro-

cessing. Therefore, we have developed an efficient transforma-

tion between the two parameter spaces (as detailed in [3]); for the

remainder of the paper, however, we will refer exclusively to the

(0, oh) parameterization.

Now, given sufficient computing resources, we could deter-

mine the horizon line by simply evaluating J2 at the following

values of 0 and Gt, :

(i_ _z j)(Oi,,Ub,j) = --_, 100 ,O<i<-nt,O<-j<n 2 (14)

and choosing the maximum value of J2 As long as n t and n 2

are sufficiently large --that is, we are evaluating J2 at sufficient-

ly fine resolution over q5 and _t, -- this procedure will generate

a good approximation of the actual horizon line. Note, however,

that the required n j x n 2 evaluations of J2 may be prohibitively

expensive at full video resolution, especially if we wish to run our

algorithm at 30 Hz. Gradient-based optimization techniques also

do not offer a viable alternative, since ( 1) the gradient of J2 over

(0, oh) is not expressible in closed form, and (2) gradient-based

optimization techniques are guaranteed to converge only to local

maxima.

We therefore adopt the following two-step approach. First, we

evaluate J2 on coarse, down-sampled images (X/. x YL ) with

n I = n2<40 [see equation (14)]. Second, we fine-rune this

coarse estimate through a bisection-like search about the initial

guess on a higher resolution image (.'t_x Ytt, XL"A'tl,

Yc (_ YH ). Exact values for n_ , n 2 , (X L, YL) and (X H, Ytt) de-

pend on the available processing power of the current system;

sample values are given in Section 4 below. Further details on the

search part of the algorithm may be found in [3].

The reader might be wondering at this stage whether a full

search of the line-parameter space (even at coarse resolution) is

really required once fying, since the horizon at the current time

step should be very close to the horizon at the previous time step;

perhaps speed improvements could be made by limiting this ini-

tial search. There is, however, at least one very important reason

for not limiting the initial search -- namely robustness to single

frame errors in horizon estimation. Assume, for example, that the

algorithm makes an error in the horizon estimate at time t ; then,

at time t + 1 , a limited search could permanently lock us into the

initial incorrect horizon estimate, with potentially catastrophic re-

sults. A full, coarse search of line parameter space, on the other

hand, guards against cascading failures due to single-frame errors.

3.6 Summary

Here, we summarize the horizon-detection algorithm. Given

an image at XH× Yt! resolution:

l. Down-sample the image to ._t_x YL, where ?t/_<X H,

YL" rn"
2. Evaluate J2 on the down-sampled image for line parameters

(#i, _,.j), where,

:)(Oi, cit,,)) = ----_, 100 , O<i<_n, 0<j<_,l (15)

3. Select (qb*, _l_*) such that,

Vi, j { 16)
J2lo=o..oh=oh.>-J2lo=O,.o,=oh.i, "

4. Use bisection search on the high-resolution image to fine-tune

value of (_*, e_b*)-

For space masons, our presentation thus far has omitted some

computational efficiency details, that allow the algorithm to be

run at full frame rate (30 Ha). For example, as we perform the

search in line-parameter space, we do not have to recompute J2

from scratch for every new set of values (0, c_/,). The statistics of

the distributions on each side of the hypothesized horizon line

change only incrementally. Computations can likewise be stream-

lined to be incremental for each new "/2 evaluation when com-

bined with on-line computations of ia,, _g, ]i;_ and leg. These

and other algorithmic optimizations can be found in [3].

4. Results

Figure 3 illustrates our current experimental setup. The video

signal from the MAV is transmitted from the plane through an an-

tenna to a ground-based computer, where all vision processing is

performed. Normally, the plane is controlled during flight by a re-

mote human pilot through a standard radio link. The goal of this

work, is of course, to automate flight control and stability of

MAVs.

Figure 4 illustrates several examples of our current algorithm

at work. Additional examples and videos can be found at hits.'//

lnil.ufl.edu/~nechyba/mav. In each image, the yellow line indi-

cates the algorithm's estimated location of the horizon. Note thai

the images in Figure 4(a) and Figure 2 are identical; thus, where

the initial algorithm failed, the newer algorithm succeeds. Figure

4(b) plots the optimization criterion "]2 for the image in Figure

4(a) as a function of the bank angle 0 and pitch percentage _h-

Note the definitive peak in J2 at the appropriate horizon estimate.

Figure 4(c) plots the distribution of pixels on each side of the es-
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Fig. 4: (a) Horizon detection example; (b) optimization function in line-parameter space for image (a); (c) Distribution of sky (b|ue
crosses) and ground pixels (green circles) in RGB space for image (a); (d) horizon detection with uneven horizon; (e) horizon
detection with severe video interference; (f) distribution of sky and ground pixels for image (e).
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Fig. 3: Experimental setup.
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timated horizon; blue crosses correspond to sky pixels in RGB

color space, while green circles correspond to ground pixels in

RGB space. In Figure 4(d) we show that the current algorithm

correctly identifies the horizon, despite the fact that in this image,

the uneven horizon violates the straight-line assumption implicit

in our current approach. In Figure 4(e) we show that our algorithm

is very robust to video interference or noise. This is so, despite

drastic differences in color distributions, as depicted in Figure

4(e) and 4(0, between images 4(a) and 4(d), respectively.

Our horizon-detection algorithm has been demonstrated to run

at 30 Hz on a 900 MHz x86 processor with a down-sampled im-

age of X/. x YL = 80 × 60 resolution, a search resolution of

n = 36, and a final image of X n × Ytt _ 320 × 240 resolution.

If such computing power is not available, we have shown only

slightly reduced performance at values as low as

XL×YL = 40×30,n = 12 andXHxYH = 160x120.

5. Conclusions

At different times of the day, and under both fair and cloudy

conditions, we have gathered hours of video on-board our MAV,

flying under manual control over terrain that includes roads,

buildings large and small, meadows, wooded areas, and a lake.

For these data, our horizon-detectinn algorithm correctly identi-

fies the horizon in over 99.9% of cases. This horizon-detection al-

gorithm lies at the core ofa fiight-stability system for MAVs that

we describe in a companion paper [4], where we address real-time

control issues, including extreme attitude detection (i.e. no hori-

zon in the image), confidence measures in the detected horizon

estimate, filtering of horizon estimates, and actual self-stabilized

flight data.

Horizon detection and flight stability are, of course, only the

first step in full vision-based autonomy of Micro Air Vehicles.

We are currently exploring additional vision processing of the on-

board video to perform detection and recognition of targets of in-

terest on the ground, vision-based navigation through landmark

detection, and tracking of other MAVs, as a precursor to MAV

formation flying (i.e. swarming). We also believe that in-flight

horizon detection and tracking may well allow partial system

identification of notoriously difficult-to-characterize micro air ve-

hicles.
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